Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 107: 403-413, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395958

RESUMO

There is increasing evidence showing that microglia play a critical role in mediating synapse formation and spine growth, although the molecular mechanism remains elusive. Here, we demonstrate that the secreted morphogen WNT family member 5A (WNT5A) is the most abundant WNT expressed in microglia and that it promotes neuronal maturation. Co-culture of microglia with Thy1-YFP+ differentiated neurons significantly increased neuronal spine density and reduced dendritic spine turnover rate, which was diminished by silencing microglial Wnt5a in vitro. Co-cultured microglia increased post-synaptic marker PSD95 and synaptic density as determined by the co-localization of PSD95 with pre-synaptic marker VGLUT2 in vitro. The silencing of Wnt5a expression in microglia partially reduced both PSD95 and synaptic densities. Co-culture of differentiated neurons with microglia significantly enhanced neuronal firing rate as measured by multiple electrode array, which was significantly reduced by silencing microglial Wnt5a at 23 days differentiation in vitro. These findings demonstrate that microglia can mediate spine maturation and regulate neuronal excitability via WNT5A secretion indicating possible pathological roles of dysfunctional microglia in developmental disorders.


Assuntos
Espinhas Dendríticas
2.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38187769

RESUMO

Olfactory ensheathing cells (OECs) are unique glial cells found in both the central and peripheral nervous systems where they support the continuous axonal outgrowth of immature olfactory sensory neurons to their targets. Here we show that following severe spinal cord injury, olfactory bulb-derived OECs transplanted near the injury site modify the normally inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion center. To understand the mechanisms underlying the reparative properties of such transplanted OECs, we used single-cell RNA-sequencing to study their gene expression programs. Our analyses revealed five diverse subtypes of OECs, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration and repair, secreted molecules, or microglia-like functions. As expected, we found substantial overlap of OEC genes with those of Schwann cells, but also with astrocytes, oligodendrocytes and microglia. We confirmed established markers on cultured OECs, and then localized select top genes of OEC subtypes in rat olfactory bulb tissue. In addition, we present evidence that OECs secrete both Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that adult OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate diverse functions related to wound healing, injury repair and axonal regeneration.

3.
Acta Neuropathol Commun ; 8(1): 12, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019603

RESUMO

The accumulation of phosphorylated tau protein (pTau) in the entorhinal cortex (EC) is the earliest tau pathology in Alzheimer's disease (AD). Tau tubulin kinase-1 (TTBK1) is a neuron-specific tau kinase and expressed in the EC and hippocampal regions in both human and mouse brains. Here we report that collapsin response mediator protein-2 (CRMP2), a critical mediator of growth cone collapse, is a new downstream target of TTBK1 and is accumulated in the EC region of early stage AD brains. TTBK1 transgenic mice show severe axonal degeneration in the perforant path, which is exacerbated by crossing with Tg2576 mice expressing Swedish familial AD mutant of amyloid precursor protein (APP). TTBK1 mice show accumulation of phosphorylated CRMP2 (pCRMP2), in the EC at 10 months of age, whereas age-matched APP/TTBK1 bigenic mice show pCRMP2 accumulation in both the EC and hippocampal regions. Amyloid-ß peptide (Aß) and TTBK1 suppress the kinetics of microtubule polymerization and TTBK1 reduces the neurite length of primary cultured neurons in Rho kinase-dependent manner in vitro. Silencing of TTBK1 or expression of dominant-negative Rho kinase demonstrates that Aß induces CRMP2 phosphorylation at threonine 514 in a TTBK1-dependent manner, and TTBK1 enhances Aß-induced CRMP2 phosphorylation in Rho kinase-dependent manner in vitro. Furthermore, TTBK1 expression induces pCRMP2 complex formation with pTau in vitro, which is enhanced upon Aß stimulation in vitro. Finally, pCRMP2 forms a complex with pTau in the EC tissue of TTBK1 mice in vivo, which is exacerbated in both the EC and hippocampal tissues in APP/TTBK1 mice. These results suggest that TTBK1 and Aß induce phosphorylation of CRMP2, which may be causative for the neurite degeneration and somal accumulation of pTau in the EC neurons, indicating critical involvement of TTBK1 and pCRMP2 in the early AD pathology.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Modelos Animais de Doenças , Córtex Entorrinal/metabolismo , Córtex Entorrinal/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos Transgênicos , Fosforilação , Células Piramidais/metabolismo , Células Piramidais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...